2110

IEEE TRANSACTIONS ON COMPUTERS, VOL.63, NO.9, SEPTEMBER 2014

A Memory-Efficient TCAM Coprocessor
for IPv4/IPv6 Routing Table Update

Fang-Chen Kuo, Yeim-Kuan Chang, and Cheng-Chien Su

Abstract—Ternary content-addressable memory (TCAM) is a simple hardware device for fast IP lookups that can perform a lookup per
cycle. However, prefixes may be inserted into or deleted from the TCAM because of changes in Internet topology. Traditional TCAM
coprocessors maintain the enclosure relationship among prefixes by using an extended binary trie and perform TCAM movements
based on an update algorithm (e.g., CAO_OPT) which runs on a local CPU to maintain the speed and correctness of the TCAM search
process. In this paper, we propose a memory-efficient TCAM coprocessor architecture for updates that require only small memory

size compared with the extended binary trie. The average number of TCAM movements per update is almost the same as that of
CAO_OPT. However, the time to compute how to move TCAM entries in the proposed TCAM coprocessor is less than that in
CAQ_OPT. Only a small part of total TCAM search cycles is used to complete our update process. The proposed TCAM

architecture can also be made smaller and faster because large off-chip memory for the extended binary trie and a local CPU are

no longer necessary.

Index Terms—TCAM, IP lookup, longest prefix match, update

1 INTRODUCTION

HE primary function of routers on the Internet is to for-

ward IP packets to their final destinations [8]. Therefore,
routers choose the next output port to send out every
incoming packet. The rapid increase of Internet users causes
IPv4 address exhaustion, which can be solved in the short
term by classless interdomain routing [1]. Each routing
entry uses a <prefix, prefix length> pair to increase the
usage of IP addresses and longest prefix match (LPM) for
routing table lookups. The LPM limitation complicates the
routing table design. A long-term solution for insufficient IP
addresses is IPv6 protocol defined by the Internet Engineer-
ing Task Force [2]. The IPv6 address length is 128 bits; thus,
IPv6 is exhausted only after a long time.

The packet forwarding design performs poorly at pres-
ent. Each router searches its routing table by using destina-
tion IP addresses and forwards the packet to the next router
based on the next port number. Therefore, a fast routing
lookup scheme should be developed.

Ternary content-addressable memory (TCAM) devices
are used widely as search engines for packet classifica-
tion and forwarding in commercial routers and network
devices [3], [4]. TCAM takes one cycle to search all rout-
ing entries in parallel at a very high lookup speed. For
IP lookups, several prefixes (up to 32 for IPv4 and 128
for IPv6) may match the destination address of the
incoming packet. However, only the longest prefix match
is output. In contrast, conventional network processor-

o The authors are with the Department of Computer Science and Information
Engineering National Cheng Kung University, No. 1, Ta-Hsueh Road,
Tainan 701, Taiwan, ROC.

E-mail: {p7895107, ykchang, p7894104 |@mail.ncku.edu.tw.

Manuscript received 20 Sep. 2012; revised 6 Jan. 2013; accepted 8 Jan. 2013.
Date of publication 27 Jan. 2013; date of current version 7 Aug. 2014.
Recommended for acceptance by P. Bellavista.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TC.2013.22

based software and field-programmable gate array/
application-specific integrated circuit-based hardware
designs that use various data structures may require
multiple memory access for a single lookup.

In TCAM, each cell can be in one of three logic states: 0,
1, or * (“don’t care” state). Fig. 1a shows the typical design
of the NOR-type TCAM cell [12], in which two 1-bit 6-T
static random-access memory (SRAM) cells (Dy and D)
are used to store the three logic states of a TCAM cell.
Generally, the 0, 1, and * states of a TCAM cell are set by
Dy=0and D;=1,Dy=1 and D; =0, and Dy =1 and
D, =1, respectively (Fig. 1b). Each SRAM cell consists of
two cross-coupled inverters (each formed by two transis-
tors) and two additional transistors used to access each
SRAM cell via two bitlines (BLs) and one wordline (WL)
for read and write operations. Therefore, each SRAM cell
has six transistors, and each TCAM cell consists of 16. The
pair of transistors (M;/M;s or My/M,) forms a pulldown
path from the matchline (ML). If one pulldown path con-
nects the ML to ground, the state of the ML becomes 0. A
pulldown path connects the ML to ground when the
searchline (SL) and Dy do not match. No pulldown path
that connects the ML to ground exists when the SL and
Dy match. When the TCAM cell is in the “don’t care”
state, M3 and M, prevent searchlines SL and SL, respec-
tively, from being connected to ground regardless of the
search bit. Similarly, when the search bit is “don’t care”
because SL =0 and SL = 0, M; and M, prevent search-
lines SL and SL, respectively, from being connected to
ground regardless of the stored value in the TCAM cell.
Fig. 1c shows the truth table of match line of a TCAM cell
with inputs of search bits and the cell states. Multiple cells
can be connected serially to form a TCAM word by short-
ening the MLs of adjacent cells. A match condition on the
ML of a given TCAM word results only when the ML of
every individual cell is not connected to ground. Several
TCAM words can be connected by shortening all SLs to

0018-9340 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

KUO ET AL.: AMEMORY-EFFICIENT TCAM COPROCESSOR FOR IPV4/IPV6 ROUTING TABLE UPDATE

ML SL SL
[M: M; 3
(\ (D:)
O l [EMs Ms | | :
| | Comparison I |
WL logic WL
B, Bl BL. BLJ
6-T SRAM 6-T SRAM
Cell #0 Cell #1
(a) NOR-type TCAM cell.
SRAM celll TCAM Search line] Search
D, | D, state SL | SL bit
0 1 0 0 1 0
1 0 1 1 0 1
1 1 X 0 0 X
0 0 N/A 1 1 N/A

(b) Ternary encodings for TCAM states and search bits.

TCAM Search bit
state 0 1 X
0 1 0 1
1 0 1 1
X 1 1 1

(c) Truth table for the matchline (ML).

Fig. 1. Typical TCAM device.

form a typical TCAM unit (Fig. 2). A logic unit called pri-
ority encoder is designed to output the index of the first
matching TCAM word at the lowest (or upper) address.
The ML sense amplifier (MLSA) between each TCAM
word and priority encoder detects the state of its ML
(high = match; low = miss).

Given that the search bit can be set to “don’t care”, a
control register called global mask register can be used to
mask TCAM columns that should not participate in the
matching process. Any column can be masked by setting
the corresponding global mask bit to 0, because both SL
and SL are set to 0 via the bitline control logic. A TCAM
search operation begins by first loading the search key
and global mask into corresponding registers. Next, all
MLs are placed temporarily in the match state by pre-
charging them to high. Then, SL drivers broadcast differ-
ential searchlines (SL and SL), and each TCAM cell com-
pares the stored bit against the bit on its corresponding
SLs. MLs which have all matching bits remain in a high
state and the ones with at least one bit that misses dis-
charge to ground. Finally, the encoder maps the ML of
the matching location to its encoded address.

When global mask is used, match operations in TCAM
become rich. In normal IP search mode, all global mask bits

2111

Global mask
Maskda >[M 0 0 01 e
urbm >[M[M] 0

M | Search key

register
CLK
S&a]lrg:h* E Bitline
ritee S
Reade g A‘F% A‘F% A‘T% A‘F% Control Logic
Valideq ©
Resete =
WLo L/TML{
PSHOH (O >
S M g
S |WL L/TML] =: [match
Address | 3 1 ‘ ‘ . |5 |aten
) 5 s Do
S O 12 :2
o
% WL [y = |Inde
ML.
<oy o e
SLo S_Lo SL, S_L[SL, S_Lz SL3 S_L3
1 1 1 1 MLSA
(0 @ o m|:::;>
Output Dat:

Output data register

Fig. 2. Typical TCAM device.

are enabled. Fig. 2 shows a typical TCAM device that has
four 4-bit prefixes. TCAM can be searched by using SLs and
MLs. Like normal RAM, TCAM can also be read or written
by using BLs and WLs. The input global mask is 1111, and
the input search data is 1111. Two prefixes are matched
against the search key 1111, and the priority selector returns
the index 0 of prefix 1111. In the prefix search mode, a prefix
can be used as the search key for a match in TCAM. For
example, when the prefix of length 3, 110X, is used as the
search key, the most significant three bits of the global mask
register are enabled, and the fourth mask bit is disabled.
Thus, only the most significant three bits of all TCAM
entries are compared with 110. As a result, the search result
returned by TCAM is the LPM that covers or is covered by
the input prefix, which is 117" in this example.

However, TCAM has some disadvantages, including
high power consumption due to the charging and dis-
charging processes of all TCAM cells, inefficiency of stor-
ing ranges due to the nature of ternary states in TCAM
cells, and slow update operations. In this paper, we
focus only on the TCAM update problem. Solutions for
the other two problems can be found in [12], [21], [22],
[23]. Typically, the prefixes stored in TCAM must be
sorted in decreasing order of their lengths and so that
the first matching prefix is the LPM.

Routing table update is traditionally performed by a
local CPU via a CPU/TCAM coprocessor interface, such
as the 64-bit PCI bus in an Intel IXP2800 network proces-
sor [17]. Fig. 3a shows the typical TCAM coprocessor
architecture along with a network processor. Search
requests are issued by lookup threads of the network
processor, and update requests are issued by the local
CPU. When TCAM content needs to be updated, the
CPU locks the interface to avoid inconsistent and/or
erroneous results. However, the disadvantage of interface
locking is that all lookup threads must be suspended
until the update process is complete, thereby impairing

2112

Switch Fabric|
Interface

Thread 1 mogEn R e
Search ! Write ﬁ N orupdate

Thread 2
= > Prefix 1 » Action 1

S OB EEEEE

SRAM

oo oo oo oE
Data structure

a o

1 ..

i CPU [
a o

g : i Prefix 2 »| Action 2
Action | : :>
|-
Network Processor| 1| Prefix n-1 Action n-1
1| Prefix n » Action n
1
E_ TCAM CoProcessor

Frame

(a) Typical TCAM coprocessor architecture

| Switch Fabric Interface |

Search

J .
Write | Prefix 1
f é
3 Thread 1 Regd | Prefix 2
‘= | | Thread 2 Valid .
=P Reset :
5 ‘
1
S | Thread u Mask data > .
1

% (| Thread 1 |[Tnput Data

=9
=
€< Thread 2 ::Address >
=
= | Prefix n-1
[Thread m -
1
Network Processor | TCAM

MAC Framer

Frame

(b) Proposed TCAM coprocessor architecture

Fig. 3. TCAM coprocessor architecture. Typically, the search, read, and
write operations in TCAM coprocessor take 1, 1, and 3 cycles,
respectively.

overall search performance. This paper does not consider
dual-port TCAM, which permits the local CPU and net-
work processors concurrent access. Therefore, a non-
blocking update algorithm should be designed. We also
need a data structure usually stored in off-chip SRAM to
compute how to perform the TCAM update process
(Fig. 3a). In other words, we must know which TCAM
entry needs modification or transfer to another TCAM
entry to fulfill the update request. These update compu-
tations are performed by the CPU upon receiving an
update request. One disadvantage is that the required
data structure is usually large, such as the auxiliary
binary trie proposed in [6].

In this paper, we propose a memory-efficient TCAM
update architecture for IPv4/IPv6 routing lookups
(Fig. 3b). The new update scheme does not require large
memory for the extended binary trie data structure in
existing schemes [6], [9], [10], [14], [15]. Thus, off-chip
memory and local CPU are not necessary in the TCAM
coprocessor. Computing how to modify TCAM content

IEEE TRANSACTIONS ON COMPUTERS, VOL.63, NO.9, SEPTEMBER 2014

can be made faster than the computation based on the
extended binary trie. The proposed update process per-
formed by update threads in the network processor is also
non-blocking.

We use the network processor Intel IXP2800 as an exam-
ple to explain how the proposed update scheme can be inte-
grated into routers. In IXP2800, the packet processing
procedure follows the pipeline model which has three
stages: receive, process, and transmit. Several threads,
called receive, lookup, and transmit threads, are allocated
independently to these stages. For packets that take longer
processing time, more threads are usually allocated, or the
procedure becomes stuck and packets are dropped. A
global FIFO queue can be used for load balancing between
different stages. That is, one queue can be allocated between
the receive and process stages (Queue A), and another
between the process and transmit stages (Queue B). The
basic processing flow works as follows: One receive thread
enqueues the packet in Queue A after receiving it. Then, the
lookup thread dequeues the packet from Queue A and
enqueues the packet in Queue B after searching TCAM to
obtain next hop information. Finally, transmit threads
dequeue the packet from Queue B and forward it to the cor-
rect next hop.

We can allocate unused threads for the update to realize
the proposed TCAM coprocessor design. We allocate
another queue (Queue C) to buffer packets that result in
prefix updates. If a lookup thread finds that the packet
dequeued from Queue A is for update, it enqueues the
packet in Queue C, rather than in Queue B. After dequeuing
the packet from Queue C, update threads handle the neces-
sary update operations. As a result, updates can be handled
by the network processor without the help of local CPU.

The rest of the paper is organized as follows. Section 2
provides background knowledge on the topic. In Section 3,
we analyze the prefix enclosure relationship and propose a
memory-efficient TCAM update scheme based on this anal-
ysis. Performance comparisons are presented in Section 4,
and concluding remarks are given in the last section.

2 RELATED WORK

Many TCAM update algorithms have already been pro-
posed; this section presents a survey of these algorithms.
The TCAM update process consists of three major parts. In
the first part, we determine the TCAM entry where a prefix
can be stored so that the TCAM device can return the LPM
to the destination IP address of the incoming packet. Two
well-known constraints, namely, prefix-length ordering
(PLO) and chain-ancestor ordering (CAO), were proposed
for this purpose [6]. After the prefix ordering constraint is
determined, we have to compute prefixes that should be
moved to other positions after a prefix is inserted or deleted
to maintain correct prefix ordering. Based on the ordering
constraint, a prefix can be moved to more than one position.
Normally, this step cannot be done without a data structure
(e.g., a binary trie) that keeps track of prefix storage in
TCAM. In the third part, we move the prefixes determined
by the second part from one position to another. The effi-
ciency of this step may depend on the location or pool of
unused entries.

KUO ET AL.: AMEMORY-EFFICIENT TCAM COPROCESSOR FOR IPV4/IPV6 ROUTING TABLE UPDATE

Typically, prefix order should follow the PLO constraint
[6]. According to the PLO constraint, two prefixes of the
same length do not require a special order because they are
disjoint; thus, only one of them may match the search key.
On the other hand, if more than one prefix matches the
search key, one must enclose the other; thus, their lengths
must be different. According to this rule, only prefixes of
different lengths require sorting. As a result, the naive
method for allocating prefixes in TCAM is to divide prefixes
into groups according to length. A maximum of W groups
are allocated to the W-bit IP address space (e.g., 32/128 for
IPv4/1Pv6). All groups are then stored in TCAM in decreas-
ing order of their lengths. The free pool of unused entries is
placed at the bottom of the TCAM.

With the PLO constraint, a mirrored copy of all TCAM
entries in a linear array can serve as the data structure for
monitoring the prefixes stored in TCAM. This linear array is
augmented with boundary indices to record the start and
finish prefixes of all groups divided by their lengths. Inser-
tion is simple because the length of the prefix to be inserted
is known. However, when deleting a prefix P, the TCAM
coprocessor has to search the linear array in off-chip mem-
ory to check the existence of P in TCAM and the TCAM
entry that stores P. The worst-case number of memory
movements for this method is O(W).

The PLO_OPT algorithm proposed in [6] also joins pre-
fixes of the same length. However, the free pool is placed in
the center of the TCAM (i.e., between the groups of lengths
W/2—1 and W/2). Prefixes with length W to W /2 are
stored above the free pool, and prefixes with length W /2—1
to 1 are stored below the free space. The update algorithm is
the same as the naive method. The worst-case number of
memory movements is O(W/2).

Although the PLO update algorithm is simple, the
number of TCAM entry movements is much higher than
that of the CAO constraint also proposed in [6]. As stated
above, if two prefixes match the search key, one must
enclose the other. All prefixes with this enclosure rela-
tionship form a prefix enclosure chain. Therefore, only
prefixes in a prefix enclosure chain have to be arranged
in decreasing order of their lengths. In CAO_OPT, free
space is also maintained in the center of TCAM. Every
prefix enclosure chain is cut in half by the free space. Sup-
pose D is the length of a chain in the trie structure. The
distance from every prefix in this chain to the free space
is less than D/2. Thus, after the update, the number of
TCAM entry movements in this chain is less than D/2,
where D is the maximum length of the chain. In practice,
D =7in IPv4, and D = 11 in IPvé6.

The augmented binary trie proposed in CAO_OPT [6] for
monitoring prefixes stored in TCAM is more complex than
the linear array required in PLO. The size of off-chip mem-
ory for the binary trie is restricted when IPv6 is considered.
Aside from left and right child pointers, some fields that
require pre-computation are wt, wt_ptr, and hcld_ptr for
each node in the binary trie [6]. Assume that each pointer
requires four bytes and that wt requires 1 byte. Each binary
trie node takes 17 bytes. For the IPv4 routing table AS6447
(2011-04-20), which consists of 367,719 prefixes, the binary
trie consists of 907,221 nodes. Thus, 15 MB memory is
required, which can be placed only in off-chip memory.

2113

When a prefix p is inserted or deleted, the following infor-
mation has to be computed. 1) the longest chain which com-
prises p denoted by LC(p) and its length (i.e., the number of
prefixes in the chain), 2) the path from the trie root to node
p, 3) a child node of p with a prefix, 4) the highest prefix-
child of p denoted by hcld(p) in terms of the TCAM location
of this child, and 5) the chain denoted by HCN(p) which
comprises ancestors of p, prefix p itself, hcld(p), held(held(p)),
and so on. As analyzed in [6], LC(p) and HCN(p) are deter-
mined in O(W) time. In sum, the two disadvantages are: 1)
computing information for CAO is time consuming, and 2)
storing this information requires large off-chip memory.
The proposed TCAM update scheme aims to solve these
two disadvantages.

TCAM update schemes for packet classification are pro-
posed by [18], [19], [20]. In [18], authors propose a consistent
algorithm for updating a batch of rules. This algorithm
focuses on how to maintain the consistency of a filter set to
avoid locking the TCAM coprocessor during the update
process. In [19], authors propose a fast way to update rules
by inserting new filters into arbitrary entries without con-
sidering the priority order among overlapped filters. How-
ever, this approach slows the lookup speed because it
requires logsN lookups, where N is the number of the dis-
tinct priorities of rules, to determine the filter with the high-
est priority. In [20], authors propose the use of two kinds of
TCAM (i.e., LTCAM and ITCAM) to store filters. LTCAM
stores filters with the highest priority; all filters in LTCAM
are disjoint. Remaining filters are stored in ITCAM, and the
priority graph proposed by [18] is required to manage the
filters in ITCAM to ensure correct lookups. A multidimen-
sional trie is created to determine the filters to be stored in
LTCAM. LTCAM and ITCAM are searched in parallel. The
search result of ITCAM is discarded if a match is found in
LTCAM because the matched filter in LTCAM must have a
higher priority than the one in ITCAM.

3 PRoPOSeED TCAM UPDATE SCHEME

In this section, we describe some notations and prefix
properties needed in this paper. Then, the prefix enclo-
sure relationship is analyzed for routing tables available
from typical routers on the Internet. Based on the ana-
lyzed results, a novel memory-efficient TCAM update
scheme is proposed.

A W-bit prefix P of length len is normally denoted as
bw_1...bw_ien * ... (W — len trailing don’t cares) in ternary
format, where b, =0or 1 fori =W —1to W — len. Prefix P
of length len is a range of consecutive addresses from
bW—l- . .bw,lmO. ..0 to bVV—1~ . -bVV—IenL LA prefix is said to
be enclosed or covered by another prefix if the address
space covered by the former is a subset of that covered by
the latter. For two distinct prefixes A and B,B D> A or
A C Bis used to denote that B encloses A, where D or C is
called the enclosure operator. Two prefixes are said to be
disjoint if none of them are enclosed by the other.

The de facto standard inter-domain routing protocol on
the Internet is the border gateway protocol (BGP), which
provides loop-free routing between autonomous systems
(ASs) [13]. Each AS independently administers a set of
routers. The address space represented by an advertised

2114

(4 ())) dy) () U) U)A)U)) 1

(a) Prefix enclosure chains.

Fig. 4. Sample routing table of five layers.

BGP prefix may be a sub-block of another existing prefix.
The former is called covered prefix and the latter is called
covering prefix. Covered and covering prefixes form a prefix
enclosure chain.

We analyze three BGP IPv6 routing tables from [5] to
determine the detailed enclosure relationship between cov-
ered and covering prefixes. Given that these existing IPv6
tables are too small compared with IPv4 tables, we also gen-
erate two routing tables larger than 120,000 prefixes
(V6Genel and V6Gene2) using the generator in [7].

In theory, one IPv6 prefix may be covered by at most 127
prefixes. Therefore, the worst-case enclosure chain size is
128 for IPv6. To precisely describe the prefix enclosure rela-
tionship, the prefixes are grouped into layers based on the
following layer grouping scheme: Prefixes that do not cover
any other prefix in the routing table are grouped into layer
1. Prefixes that cover only layer 1 prefixes are grouped into
layer 2 and so on.

Definition 1. P, denotes a prefix in layer k.

Definition 2. Parent (P) denotes the immediate parent prefix of
P on an enclosure chain comprising P.

Fig. 4a shows the prefix enclosure relationship for a rout-
ing table with five layers (i.e., the maximum enclosure chain
size is 5) and the number of prefixes in each layer in Table 1

TABLE 1
Routing Table Grouping Results

Database| V6Genel | V6Gene2 | AS2.0 |AS1221|AS6447
Size 120,861 127,697 | 3,001 933 3,090

Layer-1 115,709 123,279 | 2,808 867 2,870
(95.7%) (96.5%) [(93.6%) [(92.9%)(92.9%)

Layer-2 2,875 2,770 184 62 205
(2.4%) (2.1%) | (6.1%) | (6.6%) | (6.6%)

Layer-3 |1048 (0.9%)| 794 (0.6%)|8 (0.3%)|3 (0.3%) (Olf%)

Layer-4 | 563 (0.5%) |428 (0.3%) 1 1 2

Layer-5 | 269 (0.2%) | 183 (0.1%)

Layer-6 | 169 (0.1%) 87

Layer-7 130 71

Layer-8 57 39

Layer-9 23 27

Layer-10 12 11

Layer-11 6 8

IEEE TRANSACTIONS ON COMPUTERS, VOL.63, NO.9, SEPTEMBER 2014

layer Prefix layer V - 0
layer-1<t-
Free Space«{
@ 2 layer-2 é
@ 3 layer-3 -
@ 4 layer-4. :
@ 5 layer-5{}

for all five routing tables. Layer 1 prefixes account for 92 to
96 percent of prefixes in the routing table. Layer 2 prefixes
account for 2 to 6 percent of the prefixes. Prefixes in other
layers account for only less than 1 percent of total prefixes.
Some important properties of the routing tables based on
the prefix enclosure relationship are summarized below.
A layer-(i + 1) prefix P, covers at least one layer-i prefix
P;. In other words, Py, must be parent(P;). However, if a
layer-j, P;, is parent(P;), P; can be in any layer j, where
j>i+1:

1. Alayer-(i + 1) prefix Pi;; covers at least one layer-i
prefix P,. In other words, P, must be parent (P;).
However, if a layer-j P; is parent(F;), P; can be in
any layer j, where j > i + 1.
2. If ,>P and P;D> P, we must have P;D B, for
J > 4. P; and P, must also be in the same enclosure
chain of P.
Prefixes in the same layer are disjoint.
4. For two prefixes P, in layer-i and P; in layer-j, P; D
P; is not always true.

5. For any prefix P; in layer-j, a prefix P; must exist in
layer-i for i =1 to j—1 such that P, > Pj_; D --- D
P, D Py

6. If an input IP address has multiple matches in differ-
ent layers, the matched prefix in layer i must be lon-
ger than that in layer j fori < j.

According to our analysis of various routing tables,
layers 1 and 2 have 98 to 99 percent of the prefixes.

As for properties 1 and 2, we propose to divide TCAM
into L 4 1 layers for routing tables with L layers. The addi-
tional layer corresponds to the free TCAM space. Based on
property 2 of the routing tables, layer i is placed above layer
j for i < j. As a result, if multiple matches are found
against the input IP address, the priority encoder can return
the LPM correctly. Given that the majority of prefixes are in
layers 1 and 2, most updates must be allocated for the pre-
fixes in these two layers. Thus, the average number of
TCAM entry movements can be reduced by placing the free
space between layers 1 and 2. Fig. 4b shows the proposed
TCAM layout for the routing table of five layers. For the
routing table of L layers, an index array of size L + 1, E; for
i=0 to L, is used in the proposed TCAM update

W

KUO ET AL.: AMEMORY-EFFICIENT TCAM COPROCESSOR FOR IPV4/IPV6 ROUTING TABLE UPDATE

algorithms, as follows. E; records the index of the lowest
entry with the lowest memory location in layer i for i = 2 to
L, E, records the index of the lowest entry in the free pool
of unused TCAM entries, and Ej records the index of the
lowest entry in layer 1. The W-bit prefix is stored in the pre-
fix field of TCAM entries, where W is 32 and 128 for IPv4
and IPv6, respectively. A layer field of k additional bits is
also required to store the layer number for each prefix for
the proposed TCAM update scheme. Given that a maxi-
mum of 11 layers are analyzed for the routing tables, k = 4
is sufficient. Finally, a valid bit field in the TCAM is used to
activate a TCAM entry in the search process if the corre-
sponding valid bit is enabled.

According to the proposed layered scheme, the CAO
constraint is preserved. No augmented binary trie is
required to maintain the CAO. Below, we discuss the main-
tenance scheme of the proposed scheme when a prefix is
inserted or deleted.

P is the prefix to be inserted. The enclosure relationship
between P and the prefixes in the routing table must first be
determined. As stated in the layer grouping scheme, if P
does not enclose any prefix in the routing table, it must be
inserted in layer 1. However, if a layer 1 prefix () covers
P, must be moved up to layer 2. If) is also covered by
another layer 2 prefix R, R must be moved up to layer 3. In
general, if P is determined to be inserted in layer ¢, whether
or not a prefix) is present in layer i that covers P must be
checked. If so, then) will be inserted in layer ¢ + 1 before P
is inserted in layer i. Specifically, P is written in the same
entry as Q’s previous location in layer-i.

The operation of deleting an existing prefix P must
now be considered. If P is in layer i, the layer-(i + 1)
prefix @ that covers P must be determined. If does
not exist, P can be deleted directly. Otherwise, whether
or not) also covers another layer-i prefix (say R) must
be checked. If R exists, P can be deleted directly. Other-
wise, if @ does not cover at least two prefixes (say P
and R), the enclosure chain relationship will fail to main-
tain after P is removed. Thus, @ has to be moved down
to layer i. This case is implemented in two steps:) over-
writes P in layer ¢, and deletes @ in layer ¢+ 1. These
two steps are performed recursively until no layer move-
ment is needed. The prefix movements needed to main-
tain the chain-ancestor order for insertion or deletion are
called enclosure chain prefix movement.

To avoid performing TCAM entry movements too many
times, a free list for each layer is chosen to record the posi-
tions of the unused TCAM entries. The free list of layer ¢ is
denoted by FreeList[i] which can be implemented by a
linked list. Since layers 1 and 2 are next to the free prefix
pool, their free lists are not empty all the time.

As described, the TCAM updates primarily decide which
TCAM entries should be moved to other positions for main-
taining the prefix enclosure chain order of the layer group-
ing scheme. A special data structure is needed to quickly
determine which prefixes are affected by the newly inserted
or deleted prefix. This special data structure is usually large
and stored in off-chip memory which can be accessed by a
TCAM coprocessor.

Subsequently, a novel TCAM entry movement decision
scheme is proposed, which does not need a large amount

2115

/I k is the number of extra bits for layer field.

// “+’ is the string concatenation operator.

// TCAM width is 144 bits and IP address is ¥ bits wide.
LookupTCAM(IP, len, h)

{

01 for (i=0 to len—1) GlobalMask[i] = 1;

02 for (i=len to 143) GlobalMask[i] = 0;

03 if (h > 0) for (i= W to W+k—1) GlobalMask[i] = 1;
04 InputKey = IP + Binary(h);

05 result = TCAMSearch(InputKey, GlobalMask);

}

Fig. 5. Lookup TCAM.

of the off-chip memory for the augmented binary trie in
CAO or for the linear array in PLO. In addition to the
arrays E; and FreeList[i], only a small amount of memory
(359 KB for 367,719 prefixes) is needed to record the
length of each prefix denoted by SRAM]|il.len for i =1 to
N, where N is the number of entries in TCAM. As stated,
the extra free bits that are left unused in TCAM entries
are used as the layer field to store the layer number of
each prefix. By using the layer number, the TCAM entries
that need to be moved when a prefix is inserted or
deleted can be determined.

The prefix field in TCAM is 128 bits denoted by
bo, ...,bia7 and the layer field is bias, ..., bi31. As analyzed
previously, a maximum of 11 layers is needed for the IPv6
routing tables used in this paper; thus, 4 extra bits are
enough. Currently, TCAM devices can be configured to be
36, 72, 144, or 288 bits wide. Therefore, configuring TCAM
entries into 144 bits wide is the most suitable for IPv6. As a
result, 16 unused bits are available in each entry from which
four bits can be used for storing the layer number of each
prefix. These unused bits are used only for update opera-
tions. Therefore, when performing the lookup operations,
setting the corresponding global mask bits to 0 masks the
unused bits. Below, the TCAM updates are performed with
the 4-bit layer field.

3.1 TCAM Search

This section shows the method used in performing the
search operations in the TCAM with k extra bits for layer
numbers appended to each TCAM entry. As stated above,
the k extra bits are called the layer field to differentiate it
from the prefix field in TCAM entries. Fig. 5 shows the
detailed search algorithm LookupTCAMCUP, len, h). The pair
of parameters IP (the W-bit IP address) and len is used to
represent the prefix to be searched. Parameter £ is designed
to select the layer so that the matched prefix against search
key can only be in layer h. If h = 0, the global mask of bits
W to W+ k — 1 for layer numbers will be disabled. Thus, all
the prefixes will be matched as in the normal IP lookups. In
line 4 of the algorithm, the search key () is constructed to be
the IP address appended with the binary string of layer
number h. Finally, the TCAM query denoted by TCAM-
Query(Q, GlobalMask) is executed by the TCAM coprocessor
with the search key stored in () and the search mask stored
in GlobalMask. The result obtained from the TCAM
coprocessor consists of two parts, match and idx. If result.
match = 1, the TCAM entry at index result.idx (denoted by

2116

TABLE 2
Results after Searching Layer & with Key P
Case Subcase Possible layer for P
result. match=0 N/A 1to h
no match

N Po P, h+1to L+1
refgéiggcicg—l P=P, P exists in layer &

b P,oP 1toh

TCAM|[result.idx]) matches the search key. Otherwise, result.
match = 0 and result.idx is unused.

Given the search key P = IP/len, two kinds of search
operations can be performed: one for searching the prefixes
in a specified layer and the other for searching all the pre-
fixes as follows.

3.1.1 Search Layerh

To search the prefixes in layer h, bits W to W—k + 1 of
global mask register are activated as shown in line 3 of
Fig. 5. As a result, only the prefixes in layer h can match the
search key. Since all the prefixes in one layer are disjoint,
only one match exists in layer . We analyze the two cases
based on the search result for prefix P as follows. Table 2
summarizes the search results.

1. result.match = 0: Layer h contains no matched prefix
against the search key P. In other words, P is disjoint
from all the prefixes in layer h. P may be in layer h or
lower (i.e., P cannot be in the layer higher than h)
because of the following reasons. P is assumed to be
in layer y, where y > h. Based on the prefix group-
ing scheme, P must also enclose a prefix P; in layer k&
for k =1 to y — 1 along the prefix enclosure chain of
P. Therefore, it is a contradiction because P is dis-
joint from all the prefixes in layer h. As a result, P
may be in layer h or lower. P, is a prefix in layer h
and P, is a descendant prefix on the prefix enclosure
chain of P,, where ¢ = 1 to h — 1. P must not be
enclosed by P, because otherwise, P will also be
enclosed by P, which is a contradiction. Further-
more, P must not enclose P; since it is not possible
for a prefix P to exist such that P D P, and P, D P,
but not P, O P.

2. result.match = 1: A matched prefix P, stored in
TCAM entry TCAM([result.idx] is found in layer h.
To determine whether P, encloses or is enclosed by
P, we have to compare their prefix lengths, i.e.,
SRAMlresult.idx].len and the input len. If SRAM
[result.idx].len = len, P already exists in layer h. If
SRAMl[result.idx].len > len, P encloses the matched
prefix in layer h (i.e., P D B;). Based on the prefix
grouping scheme, P must also enclose a prefix P in
layer k for k=1 to h—1. As a result, P must be
placed in one of the layers from A+ 1 to L + 1. To
check if P encloses, is enclosed by, or is disjoint
from Py for k= h + 1 to L, we have to search layers
h+1 to L, where L denotes the number of layers
contained in the routing table. If SRAM[result.idx].
len < len, P is enclosed by the matched prefix P, in
layer h (i.e., P, D P). When P, D P, P can be in any
layer from 1 to h. Let Desc;(F,) be a descendant

IEEE TRANSACTIONS ON COMPUTERS, VOL.63, NO.9, SEPTEMBER 2014

TABLE 3
Results after Searching All Layers with Key P

Case Subcase Possible layer for P
result.match=0 N/A 1
no match
PoP, 2to L+1
result. match=1 P=P, P exists in layer A
match =P, P,o P (m>1) 1
P, > P (m=1) 1

prefix on a prefix enclosure chain of P, where i = 1
to h — 1, as shown in Fig. 4a. If we assume h =5
and P, is Fy, Desc;(Fy) could be one from the set
Covered (EU) = {DO, C(), Cl, B(). . .B37 Ao. . A7}The
enclosure relationship between P and Desc;(F;) is
unknown and P must be disjoint from any prefix
other than the ones in Covered(FEy). If P encloses or
is enclosed by any prefix in Covered(E), some pre-
fix movements among layers must be required.

Example 1. Layer 3 is searched with the search key = P in
Fig. 4a. When no match is found, P cannot enclose or be
enclosed by any descendant prefix of Cjy, such as
Ay, By, Ay, Bs, etc. However, P can enclose, be enclosed
by, or be disjoint from any other prefix in layers 1 and 2,
such as Ay, A3, By, Bs, etc. Now, if a matched prefix Cj is
found, then if P encloses C(i.e., P D Cp), P also encloses
prefixes Bj and A, in Fig. 4. However, the enclosure rela-
tionship between P and D, or Ej is unknown. Similarly,
if Cj encloses P (i.e., Cy D P), Dy and Ej also enclose P.
The enclosure relationship between P and A, A; or By is
unknown. Furthermore, P must be disjoint from any
other prefixes other than A4y, A, and B,.

3.1.2 Search All Layers

To search all the prefixes in the TCAM, the global mask
bits that correspond to the k extra bits in the layer field of
all TCAM entries are deactivated. If result.match = 0 is
returned after the TCAM search operation, P must be dis-
joint from all the prefixes in TCAM. If P is the prefix to
be inserted, P should clearly be inserted in layer 1. Other-
wise, if result.match =1 is returned, the layer in which the
matched prefix locates can be determined by checking the
array ;. Assume that the matched prefix is the prefix P,
in layer m. Two subcases are analyzed: 1) P =P, or
P> P, and 2) P, D P as follows. Table 3 summarizes the
search results

1. P=P,orPD>P,:P, must be in layer 1 (e,
m = 1) because of the following reason. Assume m
> 1. Based on the layer grouping scheme, P, must
also enclose another prefix P, in layer i for
t € {l...m —1}. This is a contradiction because the
TCAM coprocessor should have returned P, as the
longest prefix match. If P = P,,, P is already in layer
1. However, if P D P,,, P can be in layer 2 or higher.

2. P, D P: Consider two subcases, m > 1 and m = 1.
In the first subcase, P must be disjoint from all the
prefixes covered by P, in layers 1 to m — 1. This
result is obtained because if P encloses a prefix P; in
layer i for ¢ = 1 to m — 1, it must also enclose a prefix
Py in layer 1 which should have been returned as P’s

KUO ET AL.: AMEMORY-EFFICIENT TCAM COPROCESSOR FOR IPV4/IPV6 ROUTING TABLE UPDATE

Disjoint_InsertTCAM(IP, len, h) //Insert a prefix into layer /4

{

01 if (FreeList[h] # NULL) {

02 Remove the first free index (idx) from FreeList[h];

03 TCAM Write(idx, IP, len, h);

04 return;

05 }

06 Find the nearest layer u to layer 2 when FreeList{u]#NULL,;
07 Remove the first free index (idx) from FreeList[u];

08 if (u <h){

09 TCAM Write(idx, TCAM|E,).layer, SRAM[E,].len, u);

10 Decrement £, by one;

11 for(i=u+1;i<h; i++){

12 TCAM Write(E; \+1, TCAM[E})layer, SRAM[E}].len, i);
13 Decrement E; by one; }

14 TCAM Write(E, +1, IP, len, h);

15 if(h=L+1){E=E; +1;L=L+1;}//Add a new layer
16 }else {/u>h

17 k=E, *1;

18 TCAM Write(idx, TCAM[k].layer, SRAM[k].len, u);

19 Increment £, | by one;

20 for(i=u-1;i>h i—){

21 k=E_+1;

22 TCAM Write(E;, TCAM[k].layer, SRAM[k].len, i),
23 Increment £; | by one;

24}

25 TCAM Write(E,, IP, len, h),

26 }

}

Fig. 6. Algorithm to insert a prefix in layer h.

longest prefix match by the TCAM. Thus, P belongs
to layer 1. After P is inserted, the layer numbers of
all the existing prefixes will remain the same. In the
second subcase, P is enclosed by a prefix P; in layer
1. Thus, P also belongs to layer 1. If P is the prefix to
be inserted, P is placed in the layer, and all the pre-
fixes that enclose P (i.e., the prefixes on the enclosure
chain of P) must be shifted up by one layer accord-
ing to the prefix grouping scheme.

3.2 TCAM Update

Inserting a prefix P involves determining which layer to
store P and which prefixes should be moved to other
layers after P is inserted. Similarly, deleting a prefix P
involves determining which layer contains P and which
prefixes should be moved to other layers after P is
deleted. The prefix movements after a prefix is inserted
or selected are needed because the correct prefix enclo-
sure chain order needed in the layer grouping scheme
must be maintained. The algorithms for inserting and
deleting a prefix P = IP/len involve two search opera-
tions. Layer h and all the layers must be searched by
calling LookupTCAMUP, len, h > 0) and LookupTCAM(P,
len, h = 0) respectively.

The TCAM is used to write operations to move the
content of a TCAM entry from one place of the TCAM
entry to another. When we are ready to move TCAM]i]
to TCAM[jl, TCAM[j] must be unused. Otherwise,
TCAM[j] must be moved to another place to make
TCAM]Jj] available. This TCAM entry moving process
can be performed recursively. As a result, a series of
TCAM writes may be required. Before describing how to
perform the computations needed to determine where to

2117
Layer Layer
idx from
unused entry FreeList(u)
u h
[New E,
TCAME) TCAM(E,)
[+ New E,
u+l h+1
[New E,.
TCAM(E, .)) TCAMZ 1)
4+New Ej
L] L] L]
<4 New E), ,
[New £,
h-1 u—1
[¢ New £,
| TCAME | TCAME,)
[« New E, |
unused entry |« j,?lfe g]?ils];(u)
h u
TCAM(EY) [« E, TCAM(E) «+E,
(a) case u < h. (b) case u > h.

Fig. 7. Inserting a new TCAM entry in layer h.

insert P or where to delete P from, the process of insert-
ing a prefix P in layer h or deleting a prefix P stored in
layer h is shown as follows.

3.2.1 Insert a Prefix P in Layer h

Two cases are considered. The first case assumes that P is
disjoint from all the prefixes already in layer h. Since no free
entry for P in layer h exists, some TCAM entry movements
must be made to allocate a free entry. The second case
assumes that layer h contains another prefix that is not dis-
joint from P; therefore, the enclosure chain prefix move-
ment described earlier must be performed in this section.

P Is Disjoint from All the Prefixes in Layer h. Fig. 6 shows
the detailed algorithm for the first case, Disjoint InsertT-
CAMUP, len, h). The free lists of layers 1 and 2 must not
be empty because they are next to the free TCAM pool.
In general, if the free list of layer h, FreeList[h], is not
empty, an unused TCAM entry can obtain FreeList [h] to
store P as shown in lines 1 to 5 of Fig. 6. If the free list of
layer h is empty, the layer v is located with a non-empty
free list closest to layer h. To do so, the array FreeList can
be examined. The TCAM movements to create an empty
slot in layer h are implemented in lines 8 to 26 where two
cases u < h and u > h are considered separately. The
case of u < h is illustrated in Fig. 7a. An unused entry in
layer u + 1 can be created by moving the border entry
TCAM [E,] of layer u to one of its free slots and decreas-
ing FE, by one. This unused entry now becomes the
uppermost entry of layer v + 1, denoted by TCAM
[E, + 1]. Similarly, the uppermost entry of layer i can be
also made available by moving the entry TCAM [E;] of
layer ¢ to TCAM [E;_; + 1] and decreasing E; by one
repeatedly from i =u + 2 to ¢ = h. Finally, the uppermost
unused entry of layer h can be used to hold the newly
inserted entry as shown in line 14. The case for u > h is
similar as shown in lines 16 to 26 of Fig. 6 and illustrated
graphically in Fig. 7b.

Layer h Contains a Prefix that Is Not Disjoint from P. The
detailed algorithm, Chain_InsertTCAM(P, len, h), is

2118

Chain_InsertTCAM(IP, len, h)

{

01 for i=h;i<=L;itt){

02 if (SearchedResult[i] = NULL)

03 result = LookupTCAM(IP, len, i);

04 else result = SearchedResult[i];

05 if (result.match=0) {

06 Disjoint_InsertTCAM(IP, len, i); return;}

07 P;=IP/SRAM[result.idx].len; // The matched prefix
08 if (P;= P) return; /P exists

09 if (P,o P){

10 TCAM _Write(result.idx, IP, len, i);
11 swap(SRAM[result.idx].len, len);
12

13 }//end for
14 Disjoint_InsertTCAM(IP, len, L+1);//create a new layer

}

Fig. 8. Insert prefix in layer h.

shown in Fig. 8 for the second case. The array
SearchedResult[i] for i = 1,..., L is used to record if layer ¢
has already been searched during the process of deter-
mining in which layer P should be inserted. The searched
result for a prefix P can be used for another prefix @
based on property 2 stated in Section 3. Thus, lines 2 to 4
of Fig. 8 verify if a TCAM lookup in layer i is needed
based on the value of SearchedResult[i]. If the prefix P,
that encloses P exists in layer 4, P is inserted in layer 7 in
this iteration of the loop, and P, will be inserted in layer
i+1 in the next iteration, as shown in lines 7 to 12. Finally,
if all the layers are exhausted, a new layer will be created
and P is inserted in the new layer as shown in line 14.

3.2.2 Delete a Prefix P from Layer h

Consider deleting a TCAM entry (say TCAM[idx]) from
layer h, where idx is determined in the first step. Free lists
are used to record the positions of the deleted TCAM
entries. Therefore, only the valid bit field of TCAM[idx] is
set to 0. No physical TCAM movement is required, as
shown in Fig. 9.

3.3 Prefix Insertion

Fig. 10 shows the detailed algorithm Insert(IP, len, L) to
insert prefix P = IP/len into the TCAM containing L
layers. This algorithm takes O(loglL) steps to determine
the layer in which the new prefix should be put. The
algorithm starts with a lookup on all the prefixes in the
TCAM coprocessor by calling LookupTCAM(P, len, 0). If
no match is returned from TCAM coprocessor, P must
be disjoint from all the prefixes; thus, it is inserted in

// Delete the entry TCAM[idx] in layer h

DeleteTCAM(idx, h)

{

01 TCAMidx].V = 0; //disable the valid bit of the entry
02 Store index idx in FreeList[h];

}

Fig. 9. Algorithm to delete the TCAM entry in layer h.

IEEE TRANSACTIONS ON COMPUTERS, VOL.63, NO.9, SEPTEMBER 2014

// Insert prefix P = [P/len into the TCAM consisting of L layers.
Insert(IP, len, L)

01 result = LookupTCAM(IP, len, 0); // Search all layers
02 if (result.match = 0) P4, = NULL;
03 else P, = IP/SRAM[result.idx].len;
04 if (P,ucr = P) return; // P exists

05 if (Ppses © P OF Py == NULL) {
06 Chain_InsertTCAM(IP, len, 1);

07 return;

o}y JETm—=T=———=
09 SearchedResult[1] = result;

10 [bnd =2; ubnd =L;

11 while(/bnd <= ubnd) {

12 if (Ibnd = ubnd) { // P is put in layer /bnd

13 Chain_InsertTCAM(IP, len, Ibnd);
14 return;
15

}
16 mid = (Ibnd + ubnd)/21;
17 result = LookupTCAM(IP, len, mid);
18 SearchedResult|mid] = result;
19 if (result.match = 0) ubnd = mid — 1,

20 else {

21 Paicn = IPISRAM[result.idx].len;
22 if (Puicn = P) return; // P exists
23 if (Puien D P) ubnd = mid — 1,
24 else [bnd = mid + 1; //P > Puen
25

}
26 }//end while

Fig. 10. Prefix insertion algorithm.

layer 1. In this case, no other TCAM entry is affected. If
a match is found, the matched prefix P, is denoted
by IP/SRAMlresult.idx].len. If P, =P or P, D P due to
len > SRAM([result.idx].len), P must be in layer 1 as stated
in Section 3.1.2. Then, the function Chain_InsertTCAM(P,
len, 1) in Fig. 8 is called to insert P in layer 1.

After executing lines 1 to 9 of algorithm Insert(IP, len,
L), the remaining task is to deal with the case in which
PDP,, due to len < SRAM I[result.idx].len. As described
earlier, P, must be in layer 1. Therefore, P may be
inserted in layer 2 or higher. A binary search-like proce-
dure is designed to determine the layer k(k > 1) in which
P should be inserted as shown in lines 10 to 26 of Fig. 10.

Initially, the low and high bounds of the layers to be
checked are set as [bnd = 2 and ubnd = L. The while-loop
starts to perform the function Chain_InsertTCAMUIP, len,
Ibnd) if Ibnd = ubnd. Then, the middle layer between Ibnd
and ubnd is searched as shown in lines 16 to 17. The result
returned from a TCAM lookup is buffered in the array Sear-
chResult[] to indicate that the layer mid has been searched
and will be needed later. The following four possible cases
have to be considered:

1. No match is found in layer mid (line 19): The search
process must be continued by setting ubnd = mid —
1. P must not belong to layer mid + 1 or higher
because otherwise P should enclose a prefix in
layer mid and contradict the condition that P is dis-
joint from all the prefixes in layer mid. P may pos-
sibly belong to layer mid. The search process in

KUO ET AL.: AMEMORY-EFFICIENT TCAM COPROCESSOR FOR IPV4/IPV6 ROUTING TABLE UPDATE 2119
// Delete prefix P = [P/len from TCAM containing L layers. /I Delete P=IP/len in layer i from TCAM containing L layers.
Delete(IP, len, L) 01 DeleteLayer(IP, len, h);

{ {

01 result = LookupTCAM(P, len, 0); 01 for (i=h;i<L;it++){

02 if (result.match == 0) return; // P does not exist; 02 result = SearchedResult[i];

03 else P,, = IP/SRAM[result.idx).len; /| The matched prefix P, 03 if (SearchedResult[i+1] = NULL)

04 if (P, = P) { DeleteLayer(IP, len, 1); return;} 04 result] = LookupTCAM(IP, len, i+1);

05 if (P, o P) return; // P does not exist; 05 else resultl = SearchedResult[i+1];

06 lbnd=2;ubnd =1L, 06 if (resultl.match == 0) {

07 while(lbnd <= ubnd) { 07 DeleteTCAM(result.idx, i); return;

08 mid = (Ibnd+ubnd)/2 I; 08 } else { /PP in layer i+1 encloses P

09 result = LookupTCAM(IP, len, mid), 09 TCAM[result.idx].V = 0; //temporarily delete P

10 SearchedResult [mid] = result, 10 resultx = LookupTCAM(IP, SRAM[resultl .idx].len, i);
11 if (result.match = 0){ 11 if (resultx.match == 1) {

12 if (Ibnd = ubnd) return; 12 DeleteTCAM(result.idx, i); return;

13 ubnd = mid — 1; // P belongs to layers lbnd to mid — 1; 13 } else { //move TCAM[resultl.idx] to layer i

14 1 else { 14 TCAM Write(result.idx, IP, len, i);

15 P,, = IPISRAM[result.idx).len; // The matched prefix 15 SRAM(result.idx].len = SRAM[resultl .idx].len;

16 if (P,, = P) {DeleteLevel(IP, len, mid); return; } 16 len = SRAM[resultl.idx).len;}

17 if (P, o P){ 173

18 if (Ibnd = ubnd) return; 18 }

19 ubnd=mid — 1; // P belongs to layers /bnd to mid—1; }

20 }else {/P>P,

21 if (Ibnd = ubnd) return; Fig. 12. Delete a prefix in layer h.

22 Ibnd=mid + 1; // P belongs to layers mid—1 to ubnd,

%Z) } directly in line 12 since all the prefixes still follow the pre-
25 }//end while fix enclf)sure relationship in the layer grouping scheme.
} Otherwise, PP must be moved from layer h+1 to h

Fig. 11. Prefix deletion algorithm.

layers [bnd to mid — 1 is used to find out if such is
the case.

2. P is the same as the matched prefix P, (line 22):
No further action is required because P already
exists.

3. Pisenclosed by the matched prefix P, (lines 23):
As in case (1), the search process is continued by set-
ting ubnd = mid — 1.

4. P encloses the matched prefix P, qq (lines 24): P
belongs to one of the layers mid + 1 to ubnd. Thus
Ibnd is set to mid + 1 and the search process
continues.

3.4 Prefix Deletion

Fig. 11 shows the detailed algorithm Delete(IP, len, L) used
to delete prefix P = IP/len from the TCAM containing L
layers. Similar to the prefix insertion algorithm, this algo-
rithm also takes O(logL) steps to determine if P exists in
the TCAM and in which layer P is located. The logic of
finding the layer to which P belongs is the same as the
prefix insertion algorithm. Therefore, the detailed descrip-
tion of the process is omitted. After P is found in layer h,
the algorithm DeleteLayer(IP, len, h) in Fig. 12 is called to
execute the deletion operations. Before P can be removed
from layer h of the TCAM, we have to ensure that the
prefix enclosure relationship in the layer grouping
scheme is still maintained. First, we check if a prefix
called PP exists in layer h+1 and if PP encloses P as
shown in lines 2 to 5. If not, P can be deleted directly in
line 7. Otherwise, we have to check if PP also encloses a
prefix other than P in layer h. If so, P can be deleted

because P is the only child of PP. The same process con-
tinues to delete PP in layer h + 1 after PP is moved to
layer h in lines 14 to 16.

4 PERFORMANCE

In this section, the performance of the proposed TCAM
update scheme and PLO_OPT and CAO_OPT proposed in
[6] is evaluated. In the worst case, each update in CAO_OPT
takes L/2 TCAM movements, which is better than the L—1
and W TCAM movements needed in the proposed scheme
and PLO_OPT, respectively. The simulations are used to
evaluate the average numbers of TCAM lookups and writes
per insertion and deletion. Here, we show that the number
of search cycles needed to complete the operations needed
for each insertion and deletion is small and can be ignored.

We programmed all the schemes (the proposed
scheme, PLO_OPT and CAO_OPT [6]) by using the C
programming language. The five tables analyzed earlier
are used in the performance evaluation. In our experi-
ments, we divide the original routing table into two
parts. One is used as the routing table, and the other is
used as the insertion trace. The routing table is 95 per-
cent of the prefixes in the original routing table and the
insertion trace is the other 5 percent. First, we insert the
routing table into TCAM, and the corresponding binary
trie structure of CAO_OPT is constructed. A prefix is
arbitrarily selected from the update trace as an insertion
key. After all the insertion keys are inserted, we ran-
domly select another 5 percent of the original prefixes as
the deletion trace. We then randomly select one prefix at
a time from the deletion trace to perform the deletion
operations and obtain the performance results.

Tables 4 and 5 show the performance results for the
insertions and deletions, respectively. The proposed

2120
TABLE 4
Results for Insertion
PLO OPT CAO OPT Proposed

Table [#of | #of | #0f | #of | #of | #of
lookups| writes |lookups| writes |lookups| writes

AS2.0 0 7.204 0 1.206 | 1.068 | 1.029
AS1221 0 5.426 0 1.189 | 1.076 | 1.039
AS6447 0 7.498 0 1.254 | 1.077 | 1.037
[V6Genel| 0 10.837 0 1.407 | 1.084 | 1.079
[V6Gene2| 0 10.560 0 1.368 | 1.062 | 1.057

update scheme takes fewer writes than the PLO_OPT and
CAO_OPT because the TCAM free space sits between
layers 1 and 2. However, the write operations needed for
PLO_OPT, CAO_OPT, or the proposed update algorithm
cannot be performed in parallel with the TCAM search
operations. In other words, when a write operation is exe-
cuted, the TCAM search operations must be locked to
prevent erroneous search results. As a result, PLO_OPT
and CAO_OPT lose more lookup cycles than the pro-
posed scheme due to the write operations. With the
assumptions of using an invalid bit for each TCAM entry
and the support of a dual ported memory and the mutual
exclusion of a concurrent read and write, the TCAM
search operations may not need to be locked when a
TCAM write operation is ongoing.

Some additional lookups are required because the pro-
posed update scheme does not use a local CPU and an
off-chip memory to compute how to update the routing
table. As shown in Tables 4 and 5, the average numbers
of additional TCAM lookups per insertion and deletion
are 1.062 to 1.084 and 2.135 to 2.523 respectively. As such,
the proposed scheme takes only one to two additional
lookups to compute how to update a prefix. On the other
hand, the CAO_OPT scheme, which uses an extended
binary trie to record the positions of the prefixes stored
in TCAM, takes at least 300 CPU cycles to compute how
to insert and delete prefixes based on our implementation
of the CAO_OPT. If the local CPU runs at 1 GHz, 300
cycles amounts to 100 ns. These update operations on a
local CPU can be executed in parallel with the TCAM
lookup operations.

To quantify the overall performance, we introduce the
following TCAM hardware assumptions.

1. The normal TCAM search operations as well as the
ones for updates are executed on demand.

TABLE 5
Results for Deletion
PLO OPT CAO OPT Proposed

Table #of | #of | #of | #of | #of | #of
lookups| writes |lookups| writes |lookups| writes

AS2.0 0 9.220 0 1.164 | 2.377 | 1.079
AS1221 0 7.558 0 1.144 1 2.255 | 1.064
AS6447 0 9.709 0 1.236 | 2.523 | 1.123
V6Genel| 0 11.915 0 1.371 | 2.254 | 1.064
V6Gene2[0 114741 0 1.363 | 2.135 | 1.032

IEEE TRANSACTIONS ON COMPUTERS, VOL.63, NO.9, SEPTEMBER 2014

TABLE 6
Average Numbers of Cycles Needed to Perform 1,000
Insertion and 1,000 Deletion

1000 insertions | 1000 deletions
apte [l oeles ol Tyl | 0
lookups| writes |lookups| writes
AS2.0 | 1,068 | 3,087 | 2,377 | 3,237 | 9,769
AS1221] 1,076 | 3,117 | 2,255 | 3,192 | 9,640
AS6447 | 1,077 | 3,111 | 2,523 | 3,369 | 10,080
V6Genel| 1,084 | 3,237 | 2,254 | 3,192 | 9,767
V6Gene2| 1,062 | 3,171 | 2,135 | 3,096 | 9,464

2. The TCAM memory width is 144 bits.
3. The TCAM has a sustained search rate of 360 million
lookups per second [11].

4. A TCAM write takes three clock cycles [16].

5. Alookup takes one clock cycle.

We suppose that 1,000 insertions and 1,000 deletions
occur per second and that current TCAM devices could
provide a throughput of 360 million lookups per second.
The average number of clock cycles of 1,000 insertions or
deletions can be calculated as shown in Table 6, where
each TCAM write is assumed to take three cycles. Based
on the proposed TCAM coprocessor architecture, the
update threads employ the cycles that the lookup threads
generally use in traditional TCAM architecture. Only
9,464 to 10,080 TCAM search cycles are used to complete
our update process, which amounts to only a small por-
tion of the total TCAM search cycles (360 million cycles).
By using these lookup cycles for updates, the local CPU
and a large amount of the off-chip SRAM used to keep
the auxiliary binary trie are no longer needed. As shown
in Table 7, if the size of the IPv6 table is as large as 120 K
prefixes, the auxiliary binary trie needs a memory of up
to 35 MB. The memory needed for the proposed update
scheme is much smaller than that of auxiliary binary trie.
The proposed TCAM architecture becomes simpler than
the traditional one. Therefore, its overall clock rate can be
implemented faster.

5 CONCLUSIONS

In this paper, we described the problem of the TCAM
updating algorithm and presented a novel TCAM man-
agement for IPv4/IPv6. Based on the analyzed prefix

TABLE 7
The Memory Required for the Auxiliary Binary
Trie [6] and the Proposed Update Scheme

Auxiliary binary trie Proposed

Table | #of [, o 1 JMemory] Memory
prefixes (KB) (KB)
AS2.0 | 3,001 | 19,604 | 402 3.27
AS1221] 933 6,148 126 1.25
AS64471 3,090 | 21,778 | 446 3.36
[V6Genel|120,861(1,611,438(33,047 | 118.4
V6Gene2|127,697(1,707,504] 35,017 | 125.1

KUO ET AL.: AMEMORY-EFFICIENT TCAM COPROCESSOR FOR IPV4/IPV6 ROUTING TABLE UPDATE

enclosure relationship of the routing tables, the prefixes
are divided into groups through a layered approach.
Four unused bits in each TCAM entry are used for the
layer field to facilitate the proposed update operations. As
a result, no binary trie data structure, which is usually
large, is needed. The performance results show that only
a small portion of total TCAM search cycles is used to
complete our update process. Overall, the proposed
TCAM architecture is much simpler than traditional
TCAM architecture.

ACKNOWLEDGMENTS

The authors would like to express their sincere thanks to the
editors and the reviewers, who gave very insightful and
encouraging comments. This work was supported in part
by the National Science Council, Republic of China, under
Grant NSC-99-2221-E-006-105-MY3 and NSC-100-2221-E-
006-141-MY3.

REFERENCES

[1]1 J.Yu, V. Fuller, T. Li, and K. Varadhan, “RFC1519: Classless Inter-
Domain Routing (CIDR): An Address Assignment and Aggrega-
tion Strategy,” Internet Eng. Task Force (IETF), Sept. 1993.

[2] R. Hinden and S. Deering, “RFC3513: Internet Protocol Version 6
(IPv6) Dressing Architecture,” Internet Eng. Task Force (IETF), Apr.
2003.

[3] Z. Pfeffer, B. Gamache, and S.P. Khatri, “A Fast Ternary Cam
Design for IP Networking Applications,” Proc. 12th Int'l Conf.
Computer Comm. and Networks (ICCCN), 2003.

[4] K. Zheng, C.-C. Hu, H.-B. Liu, and B. Liu, “An Ultra High
Throughput and Power Efficient TCAM Based IP Lookup
Engine,” Proc. IEEE INFOCOM, 2004.

[5] BGP Analysis Reports, http://bgp.potaroo.net/index-bgp.html,
2013.

[6] D. Shah and P. Gupta, “Fast Updating Algorithms for TCAMs,”
IEEE Micro, vol. 21, no. 1, pp. 36-47, Jan. 2001.

[7] K. Zheng and B. Liu, “A Scalable IPv6 Prefix Generator for Route
Lookup Algorithm,” Proc. Int’l Conf. Advanced Information Net-
working Applications (AINA), 2006.

[8] M.A.Ranchez, E-W. Biersack, and W. Dabbous, “Survey and Tax-
onomy of IP Address Lookup Algorithms,” IEEE Trans. Network-
ing, vol. 15, no. 2, pp. 8-23, Mar./Apr. 2001.

[9] M.J. Akhbarizadeh, M. Nourani, and C.D. Cantrell, “Prefix Segre-
gation Scheme for a TCAM-Based IP Forwarding Engine,” IEEE
Micro, vol. 25, no. 4, pp. 48-63, July/ Aug. 2005.

[10] Y.-M. Hsiao, M.-]. Chen, Y.-]. Hsiao, H.-K. Su, and Y.-S. Chu, “A
Fast Update Scheme for TCAM-Based Ipv6 Routing Lookup
Architecture,” Proc. the 15th Asia-Pacific Conf. Comm. (APCC ‘09),
2009.

[11] Renesas 20Mbit Standard TCAM R8A20410BG, http://www.
renesas.com/media/products/memory/TCAM/p20_tcam
products.pdf, 2013.

[12] K. Pagiamtzis and A. Sheikholeslami, “Content-Addressable
Memory (CAM) Circuits and Architectures: A Tutorial and
Survey,” IEEE |. Solid-State Circuits, vol. 41, no. 3, pp. 712-727,
Mar. 2006.

[13] G. Huston, “Exploring Autonomous System Numbers,” Internet
Protocol]., vol. 9, no. 1, Mar. 2006.

[14] G. Wang and N.-F. Tzeng, “TCAM-Based Forwarding Engine
with Minimum Independent Prefix Set (MIPS) for Fast Updating,”
Proc. IEEE Int’l Conf. Comm. (ICC "06), 2006.

[15] T. Mishra and S. Sahni, “DUOS—Simple Dual TCAM Architec-
ture for Routing Tables with Incremental Update,” Proc. IEEE
Symp. Computers and Comm. (ISCC "10), 2010.

[16] K. Lakshminarayanan, A. Rangarajan, and S. Venkatachary,
“Algorithms for Advanced Packet Classification with Ternary
CAMs,” Proc. ACM SIGCOMM, pp. 193-204, 2005.

[17] M. Adiletta, M.R. Bluth, D. Bernstein, G. Wolrich, and H.
Wilkinson, “The Next Generation of Intel IXP Network Pro-
cessors,” Intel Technology J., vol. 6, no. 3, pp. 6-18, 2002.

2121

[18] Z]. Wang, H. Che, and S.K. Das, “CoPTUA: Consistent Policy
Table Update Algorithm for TCAM without Locking,” IEEE Trans.
Computers, vol. 53, no. 12, pp. 1602-1614, Dec. 2004.

[19] H. Song and J. Turner, “Fast Filter Updates for Packet Classifica-
tion Using TCAM,” Proc. IEEE GLOBECOM, 2006.

[20] T. Mishra, S. Sahni, and G.S. Seetharaman, “PC-DUQOS: Fast
TCAM Lookup and Update for Packet Classifiers,” Proc. IEEE
Symp. Computers Comm. (ISCC), pp. 265-270, 2011.

[21] F. Zane, G. Narlikar, and A. Basu, “CoolCAMs: Power-Efficient
TCAMs for Forwarding Engines,” Proc. IEEE INFOCOM, Mar.
2003.

[22] Y.-K. Chang, “Power-Efficient TCAM Partitioning for IP Lookups
with Incremental Updates,” Proc. Int’l Conf. Information Network-
ing: Convergence in Broadband and Mobile Networking (ICOIN '05),
pp. 531-540, Jan. 2005.

[23] Y.-K. Chang, C.-C. Su, Y.-C. Lin, and S.-Y. Hsieh, “Efficient Gray
Code Based Range Encoding Schemes for Packet Classification in
TCAM,” IEEE/JACM (ACM Trans. Networking, vol. 21, no. 4,
pp- 1201-1214, Aug. 2013.

Fang-Chen Kuo received the MS degree in com-
puter science and information engineering from
National Cheng Kung University, Taiwan, Repub-
lic of China, in 2006. He is currently working
toward the PhD degree in computer science and
information engineering at National Cheng Kung
University, Taiwan, Republic of China. His cur-
rent research interests include high-speed net-
works and high-performance Internet router
design.

Yeim-Kuan Chang received PhD degree in com-
puter science from Texas A&M University, Col-
lege Station, in 1995. He is currently a professor
in the Department of Computer Science and
Information Engineering, National Cheng Kung
University, Taiwan. His research interests include
Internet router design, computer architecture,
and multiprocessor systems.

Cheng-Chien Su received the MS and PhD
degrees in computer science and information
engineering from National Cheng Kung Univer-
sity, Taiwan, Republic of China, in 2005 and
2011, respectively. His research interests include
high-speed packet processing in hardware and
deep packet inspection architectures.

4

/

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

